# HEATER, VENTILATION & AIR CONDITIONING (HVAC)

 BASIC SYSTEM .....07-11 CONTROL SYSTEM .....07-40

## 07–00 OUTLINE

| HVAC ABBREVIATION | 07-00-1 |
|-------------------|---------|
| HVAC FEATURES     | 07–00–1 |

HVAC SPECIFICATIONS [FULL-AUTO AIR CONDITIONER] .....07–00–1 HVAC SPECIFICATIONS [MANUAL AIR CONDITIONER] .....07–00–3

#### HVAC ABBREVIATION

| A/C | Air Conditioning                               |
|-----|------------------------------------------------|
| BCM | Body Control Module                            |
| B+  | Battery Positive Voltage                       |
| CAN | Controller Area Network                        |
| CPU | Central Processing Unit                        |
| HI  | High                                           |
| IG  | Ignition                                       |
| ISO | International Organization for Standardization |
| LO  | Low                                            |
| М   | Motor                                          |
| MAX | Maximum                                        |
| OFF | Switch Off                                     |
| ON  | Switch On                                      |
| PCM | Powertrain Control Module                      |
| REC | Recirculate                                    |
| SW  | Switch                                         |

#### HVAC FEATURES

| Reduced weight                           | ٠ | Integrated A/C unit adopted                        |
|------------------------------------------|---|----------------------------------------------------|
| Improved air conditioning<br>performance | • | Sub-cooling system to multi-flow condenser adopted |
| Improved comfort                         | ٠ | Air filter adopted                                 |

#### HVAC SPECIFICATIONS [FULL-AUTO AIR CONDITIONER]

#### **Basic System**

|                  | ltom                                 |               | Creation                         |
|------------------|--------------------------------------|---------------|----------------------------------|
|                  | nem                                  |               | Specification                    |
| Heating capacity |                                      | (kW {kcal/h}) | 4.550 {3,913}: LF, L8            |
|                  |                                      |               | 5.200 (4.472): MZR-CD (RF Turbo) |
| Cooling capacity |                                      | (kW {kcal/h}) | 3.960 {3,406}                    |
|                  | Туре                                 |               | R-134a                           |
| Refrigerant      | Regular amount<br>(approx. quantity) | (g {oz})      | 500 {17.7}                       |

DPE07000000T01

07

DPE07000000T04

DPE07000000T03



| Item                |                 |                                          |                     | Specification                             |
|---------------------|-----------------|------------------------------------------|---------------------|-------------------------------------------|
|                     | Туре            |                                          |                     | Vane-rotary                               |
| A/C compressor      | Discharge       | capacity                                 | (ml {cc, fl<br>oz}) | 120 {120, 4.06}                           |
|                     | Max. allow      | able speed                               | (rpm)               | 7,200: LF, L8<br>6,400: MZR-CD (RF Turbo) |
|                     |                 | Туре                                     |                     | ATMOS GU10                                |
|                     | Lube oil        | Sealed volume<br>(approx. quantity)      | (ml {cc, fl<br>oz}) | 150 {150, 5.07}                           |
| Condenser           | Туре            |                                          |                     | Multiflow (sub-cooling type)              |
|                     | Radiated I      | neat                                     | (kW {kcal/h})       | 6.600 {5,680}                             |
|                     | Receiver/c      | Receiver/drier capacity (ml {cc, fl oz}) |                     | 180 {180, 6.08}                           |
|                     | Desiccant       |                                          |                     | Synthetic zeolite                         |
| Expansion valve     | sion valve Type |                                          |                     | Block type                                |
| Evaporator Type     |                 |                                          |                     | Double-tank drawn cup                     |
| Temperature control | •               |                                          |                     | Reheat full air mix type                  |

## **Control System**

|                                                   | Item                     |                                         | Specification                                                                                   |
|---------------------------------------------------|--------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|
| Airflow volume<br>(during heater operation)       | Blower motor             | (m <sup>3</sup> /h)                     | 300                                                                                             |
| Electricity consumption (during heater operation) | Blower motor             | (W)                                     | 256                                                                                             |
| Airflow volume (during air conditioner operation) | Blower motor             | (m <sup>3</sup> /h)                     | 450                                                                                             |
| Electricity consumption                           | Blower motor             | (W)                                     | 256                                                                                             |
| (during air conditioner operation)                | Magnetic clutch          | (W)                                     | 49.7: <del>LF, L0<br/>45.0. MZR-CD (RF Turbo)</del>                                             |
| Magnetic clutch clearance (                       | approx. quantity)        | (mm {in})                               | 0.3—0.5 {0.012—0.019}                                                                           |
| Fan type                                          | Blower motor             |                                         | Sirocco fan                                                                                     |
| Refrigerant pressure<br>switch                    | Type<br>Operating pressu | re<br>(MPa {kgf/cm <sup>2</sup> , psi}) | Triple-pressure<br>HI AND LO PRESSURE<br>0.176-0.216<br>2.94-3.34<br>(30.0-34.0, 427-483)<br>ON |

## OUTLINE

|                   | Item                          | Specification                                                                         |  |
|-------------------|-------------------------------|---------------------------------------------------------------------------------------|--|
|                   | Туре                          | Bimetallic (Indirect sensing type)                                                    |  |
|                   | Operating temperature         | 145—155 {293—311}: <b>LF, L8</b><br><del>- 135—145 {273—293}. MZR-CD (RF Turbo)</del> |  |
| Thermal protector | (°C {°F})                     | OFF ·                                                                                 |  |
|                   | Solar radiation sensor        | Photodiode                                                                            |  |
| 0                 | Ambient temperature sensor    |                                                                                       |  |
| Sensor            | Cabin temperature sensor      | Thermistor                                                                            |  |
|                   | Evaporator temperature sensor |                                                                                       |  |
|                   | Air intake actuator           | Sliding contact type                                                                  |  |
| Actuator          | Air mix actuator              | - Potentiometer type                                                                  |  |
|                   | Airflow mode actuator         |                                                                                       |  |

#### HVAC SPECIFICATIONS [MANUAL AIR CONDITIONER]

#### **Basic System**

Specification Item 4.550 {3,913}: LF, L8 (kW {kcal/h}) Heating capacity 5.200 {4,472}: MZR-CD (RF Turbo) (kW {kcal/h}) 3.960 {3,406} Cooling capacity Туре R-134a Refrigerant Regular amount (g {oz}) 500 {17.7} (approx. quantity) Vane-rotary Туре (ml {cc, fl 120 {120, 4.06} Discharge capacity oz}) 7,200: LF, L8 A/C compressor Max. allowable speed (rpm) 6,400. MZR-CD (RF Turbo) Туре ATMOS GU10 Lube oil (ml {cc, fl Sealed volume 150 {150, 5.07} (approx. quantity) oz}) Multiflow (sub-cooling type) Туре Radiated heat (kW {kcal/h}) 6.600 {5,680} Condenser (ml {cc, fl Receiver/drier capacity 180 {180, 6.08} oz}) Desiccant Synthetic zeolite Expansion valve Туре Block type Evaporator Double-tank drawn cup Туре Reheat full air mix type Temperature control

#### **Control System**

|                                                   | Item            | Specification       |                                                        |
|---------------------------------------------------|-----------------|---------------------|--------------------------------------------------------|
| Airflow volume<br>(during heater operation)       | Blower motor    | (m <sup>3</sup> /h) | 300                                                    |
| Electricity consumption (during heater operation) | Blower motor    | (W)                 | 256                                                    |
| Airflow volume (during air conditioner operation) | Blower motor    | (m <sup>3</sup> /h) | 450                                                    |
| Electricity consumption                           | Blower motor    | (W)                 | 256                                                    |
| (during air conditioner operation)                | Magnetic clutch | (W)                 | 49.7: LF, L8<br>- <del>45.0: MZR CD (RF Turbo) -</del> |
| Magnetic clutch clearance                         |                 | (mm {in})           | 0.3-0.5 {0.012-0.019}                                  |

07

DPE07000000T05

|                                | Item                                                    | Specification                                                      |
|--------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|
| Fan type                       | Blower motor                                            | Sirocco fan                                                        |
|                                | Туре                                                    | Triple-pressure                                                    |
| Refrigerant pressure<br>switch | Operating pressure<br>(MPa {kgf/cm <sup>2</sup> , psi}) | HI AND LO PRESSURE<br>0.1760.216<br>(1.7952.202, 25.5331.31)<br>ON |
|                                | Туре                                                    | Bimetallic (Indirect sensing type)                                 |
| Thermal protector              | Operating temperature<br>(°C {°F})                      | ON<br>0FF ·                                                        |
| Sensor                         | Evaporator temperature sensor                           | Thermistor                                                         |
| Actuator                       | Air intake actuator                                     | Sliding contact type                                               |

## 07–02 ON-BOARD DIAGNOSTIC

ON-BOARD DIAGNOSTIC FUNCTION

#### **ON-BOARD DIAGNOSTIC**

| FUNCTION     |      |       | <br> | 07–02–1 |
|--------------|------|-------|------|---------|
| DLC-2 CONSTR | RUCT | ION . | <br> | 07–02–4 |

#### **ON-BOARD DIAGNOSTIC FUNCTION OUTLINE**

Features

DPE070261199T01

- Includes the on-board diagnostic function and A/C operation check mode. The on-board diagnostic function consists of a malfunction detection function that detects malfunctions in input/output signals, a memory function that stores detected malfunctions, a fail-safe function that prevents an operating malfunction of output parts where a malfunction is detected, and a malfunction display function that displays detected malfunctions.
- The malfunction display function and output device operation function is accessed by connecting the WDS or equivalent to the DLC-2.

#### **ON-BOARD DIAGNOSTIC FUNCTION BLOCK DIAGRAM**



| 1 | Climate control unit             |
|---|----------------------------------|
| 2 | On-board diagnostic function     |
| 3 | Input device                     |
| 4 | Malfunction detection function   |
| 5 | Output device operation function |
| 6 | Malfunction display function     |

| 7  | Memory function    |
|----|--------------------|
| 8  | Fail-safe function |
| 9  | Normal control     |
| 10 | WDS or equivalent  |
| 11 | Output device      |

#### **ON-BOARD DIAGNOSTIC FUNCTION**

#### Malfunction detection function

- Detects errors in the input and output signals. (The ignition switch is at the ON position or the engine is running.)
- If a malfunction is detected, a DTC is output to the DLC-2 through the malfunction display function. At the same time, malfunction detection results are sent to the fail-safe and memory functions.

#### Fail-safe function

• If a malfunction is detected by the malfunction detection function and a malfunction is determined, the following

DPE070261199T03

controls are performed to prevent an operating malfunction of the full-auto air conditioner and malfunction of output parts.

| Dest whore melliumation is Nelfunction already eviate whom IC SW                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| determined                                                                                                        | Malfunction determined when IG SW at ON                                                                                                                                                                                                                           | turned to ON                                                                                                                                                                                                                                     |  |
| Cabin temperature sensor Cabin temperature sensor input value is fixed at the value right before the malfunction. |                                                                                                                                                                                                                                                                   | Cabin temperature sensor input value is fixed at <b>25</b> °C { <b>77</b> °F}.                                                                                                                                                                   |  |
| Ambient temperature<br>sensor                                                                                     | Ambient temperature sensor input value is fixed at the value right before the malfunction.                                                                                                                                                                        | Ambient temperature sensor input value is fixed at <b>15</b> °C <b>{59</b> °F}.                                                                                                                                                                  |  |
| Evaporator temperature<br>sensor                                                                                  | Evaporator temperature sensor input value is fixed at <b>0</b> ° <b>C {32</b> ° <b>F</b> }.                                                                                                                                                                       | ←                                                                                                                                                                                                                                                |  |
| Solar radiation sensor                                                                                            | Solar radiation sensor value is fixed at the value right before the malfunction.                                                                                                                                                                                  | Solar radiation sensor value is fixed at <b>0 W/m<sup>2</sup></b> .                                                                                                                                                                              |  |
| Engine coolant temperature sensor                                                                                 | Engine coolant temperature sensor input value is fixed at <b>85</b> °C {185 °F}.                                                                                                                                                                                  | ←                                                                                                                                                                                                                                                |  |
| Air mix actuator<br>(potentiometer)                                                                               | Air mix actuator drive signal is stopped right<br>when the malfunction is determined.<br>However, it is fixed at MAX COLD when the<br>manually set temperature is at <b>15.0</b> and fixed at<br>MAX HOT when the manually set temperature<br>is at <b>29.0</b> . | Control based on ambient temperature. (See Graph 1.)<br>However, it is fixed at MAX COLD when the manually set temperature is at <b>15.0</b> and fixed at MAX HOT when the manually set temperature is at <b>29.0</b> .                          |  |
| Airflow mode actuator<br>(potentiometer)                                                                          | <ul> <li>Airflow mode actuator drive signal is stopped<br/>right when the malfunction is determined.</li> <li>However, for manual operation using the<br/>MODE switch, only vent mode is operable.</li> <li>The defroster switch is operable.</li> </ul>          | <ul> <li>Control based on ambient temperature. (See Graph 2.)</li> <li>However, for manual operation using the MODE switch, only vent mode is operable.</li> <li>The defroster switch is operable.</li> </ul>                                    |  |
| Air mix actuator<br>(motor lock)                                                                                  | Air mix actuator drive signal is stopped right<br>when the malfunction is determined. After this,<br>a drive signal is output to the air mix actuator<br>and malfunction determination is performed<br><b>approx. every 5 min</b> .                               | After the IG SW is at ON, the air mix actuator<br>drive signal is again output normally. After this,<br>a drive signal is output to the air mix actuator<br>and malfunction determination is performed<br><b>approx. every 5 min</b> .           |  |
| Airflow mode actuator<br>(motor lock)                                                                             | Airflow mode actuator drive signal is stopped<br>right when the malfunction is determined. After<br>this, a drive signal is output to the airflow mode<br>actuator and malfunction determination is<br>performed <b>approx. every 5 min</b> .                     | After the IG SW is at ON, the airflow mode<br>actuator drive signal is again output normally.<br>After this, a drive signal is output to the airflow<br>mode actuator and malfunction determination<br>is performed <b>approx. every 5 min</b> . |  |



| 1 | Graph 1  |
|---|----------|
| 2 | Graph 2  |
| 3 | MAX HOT  |
| 4 | MAX COLD |

| 5 | DEFROSTER           |
|---|---------------------|
| 6 | VENT                |
| 7 | Ambient temperature |

#### **Sensor Signal Delay Function**

- Due to factors such as direct and intermittent sunlight (travelling through a city or highway tunnel), or radiant heat from the ground under a parked vehicle as well as the opening and closing of doors, the amount of solar radiation, and the ambient and cabin temperatures may change intermittently, partially, or suddenly. If control was performed based exactly on these variations, the air conditioning function would be negatively effected and smooth control could not occur. In order to prevent this, the climate control unit delays the input signals for solar radiation, and the ambient and cabin temperature as shown in the following figure. Stable control occurs due to the reading out of an average of all the variations.
- When the engine is re-started after being temporarily stopped, the ambient temperature sensor may detect a temperature higher then the actual ambient temperature. To prevent this, when the engine coolant temperature exceeds 55 °C {131 °F}, the detected ambient temperature is corrected based on the data for the ambient



• (1) 1163 W/m<sup>2</sup> (4) 0 W/m<sup>2</sup> 1163 W/m<sup>2</sup> (5) 0 W/m<sup>2</sup> (6) • (2) 26 °C {79 °F}  $\bigcirc$ 25 °C {77 °F] 26 °C {79 °F} (8) 25 °C {77 °F} (6) • ③ 26 °C {79 °F} (9) 25 °C {77 °F 26 °C {79 °F} (10) 25 °C {77 °F] (6) B3E0702T004

temperature before the engine was stopped that is stored in climate control unit and control is performed accordingly.

| 1 | Solar radiation delay                                         |
|---|---------------------------------------------------------------|
| 2 | Ambient temperature delay                                     |
| 3 | Cabin temperature delay                                       |
| 4 | (Example) Actual solar radiation variation                    |
| 5 | Delayed solar radiation determination by climate control unit |

| 6  | Time                                                                 |
|----|----------------------------------------------------------------------|
| 7  | (Example) Actual ambient temperature variation                       |
| 8  | Delayed ambient temperature determination by<br>climate control unit |
| 9  | (Example) Actual cabin temperature variation                         |
| 10 | Delayed cabin temperature determination by climate control unit      |

#### **Memory Function**

- Stores the signal determined to be malfunctioning by the malfunction detection function, and the memory is not cleared even if the ignition switch is turned off (LOCK position) or the malfunction has been repaired.
- Clear stored malfunction data by connecting the WDS or equivalent to the DLC-2.

#### **Display Function**

- This function is for outputting present or past malfunctions via the DLC-2 as DTCs.
- DTCs output via the DLC-2 can be read out using the WDS or equivalent.

#### Malfunction Display Mode

Present and past malfunctions in the control system circuits (open/short circuits) are detected, and the DTCs
indicated in the table are displayed on the WDS or equivalent. Since once a past malfunction is stored, it will
remain stored even after the malfunction has been repaired, clear past malfunctions after completing repairs.

07

| ٠  | Clear stored past malfunctions by connecting the WDS or equivalent to the DLC-2. |
|----|----------------------------------------------------------------------------------|
| DT | C Table                                                                          |

| DTC   | Malfunction location                     | Detected condition                                                 | Memory<br>function |
|-------|------------------------------------------|--------------------------------------------------------------------|--------------------|
| B1251 |                                          | Cabin temperature sensor circuit open                              | Х                  |
| B1253 | Cabin temperature sensor                 | Cabin temperature sensor circuit short (body ground)               | Х                  |
| B1255 | Ambient temperature concer               | Ambient temperature sensor circuit open                            | Х                  |
| B1257 | Ambient temperature sensor               | Ambient temperature sensor circuit short (body ground)             | Х                  |
| B1260 | Color rediction concer                   | Solar radiation sensor circuit short (power supply)                | Х                  |
| B1261 | Solar radiation sensor                   | Solar radiation sensor circuit short (body ground)                 | _                  |
| B1274 | Airflow mode actuator<br>(potentiometer) | Airflow mode actuator (potentiometer) circuit short (power supply) | х                  |
| B1275 |                                          | Airflow mode actuator (potentiometer) circuit short (body ground)  | х                  |
| B1282 | Air mix actuator                         | Air mix actuator (potentiometer) circuit short (power supply)      | Х                  |
| B1283 | (potentiometer)                          | Air mix actuator (potentiometer) circuit short (body ground)       | х                  |
| B1947 | Evaporator temperature                   | Evaporator temperature sensor circuit short (body ground)          | х                  |
| B2014 | Serisor                                  | Evaporator temperature sensor circuit open                         | Х                  |
| B2832 | Airflow mode actuator (motor lock)       | Airflow mode actuator motor lock                                   | х                  |
| B2834 | Air mix actuator (motor lock)            | Air mix actuator motor lock                                        | Х                  |
| U0140 |                                          | Reception error in signal from BCM                                 | Х                  |
| U0155 | CAN communication system                 | Reception error in signal from ICM (HEC)                           | Х                  |
| U0516 |                                          | BUS OFF error                                                      | Х                  |

#### A/C Operation Check Mode

• The climate control unit forces operation of output related moving parts as indicated in the operation check table regardless of input related parts, while simultaneously changing the display on the information display as well as illuminating each switch indicator light automatically. A malfunctioning part can be determined by verifying that each transition is as indicated in the operation check table through visual inspection, listening to the operation sound, or placing a hand on the air vent.

| WDS or equivalent<br>display                        | Target part                       | Operation condition                       | Monitor display*                                     |
|-----------------------------------------------------|-----------------------------------|-------------------------------------------|------------------------------------------------------|
| All indicator light<br>illumination<br>verification | Climate control unit              | All A/C indicator lights illuminated      | All illuminated                                      |
| Blower motor speed                                  | Blower motor                      | OFF→1ST→2ND→3RD→4TH→5TH→6TH→7TH           | 1                                                    |
| Air mix door opening angle                          | Air mix door                      | 0 %→50 %→100 %→50 %                       | 20.0 (0%)<br>20.5 (50%)<br>21.0 (100%)<br>20.5 (50%) |
| Airflow mode door<br>switching                      | Airflow mode door                 | VENT→BI-LEVEL → HEAT→HEAT/DEF → DEFROSTER | 3                                                    |
| Air intake door<br>switching (A/C<br>compressor)    | Air intake door<br>A/C compressor | FRESH ⇔ REC<br>ON ⇔ OFF                   | 4                                                    |

\* : Shown on the information display (at the set temperature display) according to each WDS or equivalent display.

#### **DLC-2 CONSTRUCTION**

Features

DPE070261199T04

#### Outline

• A connector (DLC-2) conforming to International Organization for Standardization (ISO) standards has been

added.

 Communication using the DLC-1 FEN terminal has been eliminated. Due to this, DTCs cannot be read out using a disc monitor or circuit tester.

#### DLC-2

 Shape and terminal arrangement as stipulated by the ISO international standard has been adopted for this connector. The connector has a 16-pin construction that includes the CAN\_H, CAN\_L, GND1, GND2 and B+ terminals.



B3E0402T003

| Terminal | Function                           |
|----------|------------------------------------|
| CAN_L    | Serial communication terminal (LO) |
| CAN_H    | Serial communication terminal (HI) |
| GND1     | Body GND terminal                  |
| GND2     | Serial communication GND terminal  |
| B+       | Battery power supply terminal      |

## 07–11 BASIC SYSTEM

| BASIC SYSTEM LOCATION INDEX | 07–11–1 |
|-----------------------------|---------|
| A/C UNIT CONSTRUCTION/      |         |
| OPERATION                   | 07-11-4 |
|                             |         |

Œ

A/C COMPRESSOR CONSTRUCTION . . 07–11–9 CONDENSER CONSTRUCTION . . . . . 07–11–9 REFRIGERANT LINE CONSTRUCTION . . . . . . . . . 07–11–10

#### **BASIC SYSTEM LOCATION INDEX**

**Ventilation System** 

1

A/C unit

-L.H.D.



07

## **BASIC SYSTEM**

## **Refrigerant System**



DPE711ZT1105

| 1 | A/C compressor |  |
|---|----------------|--|
| 2 | Condenser      |  |
| 3 | Receiver/drier |  |

| 4 | Refrigerant line |
|---|------------------|
| 5 | Expansion valve  |
| 6 | Evaporator       |

## **BASIC SYSTEM**

## Ventilation System



| 1 | Fresh        | 7  | Defroster     |
|---|--------------|----|---------------|
| 2 | Recirculate  | 8  | Side demister |
| 3 | Air filter   | 9  | Center vent   |
| 4 | Blower motor | 10 | Side vent     |
| 5 | Evaporator   | 11 | Front heat    |
| 6 | Heater core  | 12 | Rear heat     |

## **Refrigerant System**



| 1 | A/C compressor               |
|---|------------------------------|
| 2 | Condenser                    |
| 3 | High-pressure charging valve |

| 4 | Expansion valve             |
|---|-----------------------------|
| 5 | Evaporator                  |
| 6 | Low-pressure charging valve |

#### A/C UNIT CONSTRUCTION/OPERATION

• The A/C unit which integrates the blower, cooling and heater units has been adopted.

DPE071161133T01

#### Construction



| 1  | Evaporator                                        |
|----|---------------------------------------------------|
| 2  | Heater core                                       |
| 3  | Expansion valve                                   |
| 4  | Air intake door                                   |
| 5  | Air mix door                                      |
| 6  | Airflow mode door                                 |
| 7  | Evaporator temperature sensor                     |
| 8  | Resistor (manual air conditioner)                 |
| 9  | Power MOS FET (full-auto air conditioner)         |
| 10 | Air intake actuator                               |
| 11 | Air mix actuator (full-auto air conditioner)      |
| 12 | Airflow mode actuator (full-auto air conditioner) |
| 13 | Blower motor                                      |
| 14 | Airflow mode main link                            |

#### Evaporator

• The double-tank drawn cup is the same as the previous model except that a new refrigerant flow pattern has been adopted. Due to this, size and weight reduction is achieved while maintaining performance.

## **BASIC SYSTEM**



#### **Expansion valve**

- The expansion valve causes a sudden decrease in the pressure of the liquid refrigerant. This atomizes the refrigerant, making it easier for the evaporator to vaporize it. The expansion valve also regulates the flow volume of the refrigerant sent to the evaporator.
- The amount of refrigerant delivered to the evaporator is adjusted by the opening angle of the ball valve in the expansion valve.
- Opening angle is adjusted by a balance of the R-134a pressure (Pd) in the diaphragm, and a composite force of evaporator discharge pressure (PI) against the lower part of the diaphragm and spring force (Fs) pushing up the ball valve. When PI increases, the temperature of the temperature sensor near the diaphragm rises and the Pd heated by the R-134a in the diaphragm increases. When the Pd increases more than PI + Fs, the diaphragm is pushed down, and the shaft attached to end of the temperature sensor rod pushes down the ball valve, increasing the amount of liquid refrigerant flow. When the evaporator discharge refrigerant temperature decreases, PI + Fs increases more than Pd, the ball valve is pushed up, and the amount of liquid refrigerant flow decreases.



| 1 | Diaphragm          |
|---|--------------------|
| 2 | Temperature sensor |
| 3 | Shaft              |
| 4 | Ball valve         |
| 5 | Spring             |

| 6 | From evaporator |
|---|-----------------|
| 7 | To evaporator   |
| 8 | From condenser  |
| 9 | To condenser    |

07

#### Operation

#### Air Mix Door Operation

• The air mix door, installed in the A/C unit, controls HOT or COLD position, depending on the position of the temperature control dial. As a result, airflow distribution changes, and the airflow temperature is controlled.





| 1 | Airflow      |
|---|--------------|
| 2 | Air mix door |
| 3 | Evaporator   |
| 4 | Heater core  |

| 5 | A/C unit |
|---|----------|
| 6 | COLD     |
| 7 | HOT      |

#### **Airflow Mode Door Operation**

• The airflow mode doors move to VENT, BI-LEVEL, HEAT, HEAT/DEF, or DEFROSTER position, depending on the position of the airflow mode selector dial. As a result, airflow mode changes.



B3E0711T007

## **BASIC SYSTEM**



| 1 | Airflow                 |
|---|-------------------------|
| 2 | Airflow mode door       |
| 3 | Evaporator              |
| 4 | Heater core             |
| 5 | A/C unit                |
| 6 | To center and side vent |
| 7 | To front and rear heat  |

| 8  | To defroster and side demister |
|----|--------------------------------|
| 9  | VENT                           |
| 10 | BI-LEVEL                       |
| 11 | HEAT                           |
| 12 | HEAT/DEF                       |
| 13 | DEFROSTER                      |

#### **AIR FILTER FUNCTION**

- An air filter that can removes pollen and dust has been adopted.
  The dust filter removes pollen and dust.
  The air filter cannot be reused and must be replaced periodically.

DPE071161142T01



| 1 | Air filter      |
|---|-----------------|
| 2 | Pollen and dust |

#### A/C COMPRESSOR CONSTRUCTION

#### Construction

Consists of the following parts:

| 1 | Magnetic clutch   |
|---|-------------------|
| 2 | Thermal protector |
| 3 | A/C compressor    |

 A rotary-vane type (H12A1) A/C compressor body has been adopted for size, weight, and operation vibration reduction.

DPE711ZT1002 07

DPE071161450T01

#### CONDENSER CONSTRUCTION

- A sub cool condenser has been adopted. It is a multi-flow condenser which is equipped with a sub cooling part and integrated with a receiver/drier.
- The sub cool condenser separates liquid-gas refrigerant initially cooled at the condenser via the receiver/drier, where it returns again to the condenser sub cooling part and is cooled, accelerating liquefaction and improving cooling capacity.



| 1 | Condenser        |
|---|------------------|
| 2 | Receiver/drier   |
| 3 | Refrigerant flow |
| 4 | Cooling part     |
| 5 | Sub cooling part |

#### **REFRIGERANT LINE CONSTRUCTION**

#### Construction

DPE071161460T01

- The pipes in the refrigerant lines are made of aluminum alloy and the hoses are made of rubber (flexible hose).
  A high-pressure charging valve is located on the cooler hose (HI) and a low-pressure charging valve is located on the cooler hose (LO) (LF, L8), cooler pipe No.2 (MZR-CD (RF Turbo)).



## **BASIC SYSTEM**



| 1 | Cooler hose (HI) | ] - | 4 | Cooler pipe No.2 (MZR-CD (RF Turbo)) |
|---|------------------|-----|---|--------------------------------------|
| 2 | Cooler hose (LO) |     | 5 | High-pressure charging valve         |
| 3 | Cooler pipe No.1 |     | 6 | Low-pressure charging valve          |

#### Spring-lock Coupling (LF, L8)

- Spring-lock coupling is used for pipe-to-pipe connections. As a result, pipes can be connected easily, maintenance of torque is unnecessary, and serviceability is improved.
- There is a garter spring in the cage on the male side (cooler pipe or cooler hose (LO)) of spring-lock coupling type and the end of the pipe on the female side (A/C unit) is flared. When the pipes are being connected, the flared end of the female side forces the garter spring on the female side to expand, and by fully inserting the male side into the female side, the flared end is locked by the garter spring. When the cooler pipe or cooler hose (LO) is replaced, the additional indicator ring comes out after connecting, indicating that the flared end is locked.

## **BASIC SYSTEM**





| 1 | Female side   |
|---|---------------|
| 2 | Cage          |
| 3 | Garter spring |
| 4 | Male side     |

| 5 | Flared end     |
|---|----------------|
| 6 | Indicator ring |
| 7 | Unlocked       |
| 8 | Locked         |

## 07–40 CONTROL SYSTEM

| CONTROL SYSTEM OUTLINE 07–40–1               |
|----------------------------------------------|
| CONTROL SYSTEM LOCATION INDEX [FULL-         |
| AUTO AIR CONDITIONER]07–40–2                 |
| <b>CONTROL SYSTEM LOCATION INDEX [MANUAL</b> |
| AIR CONDITIONER]                             |
| CONTROL SYSTEM WIRING DIAGRAM [FULL-         |
| AUTO AIR CONDITIONER]                        |
| CONTROL SYSTEM WIRING DIAGRAM[MANUAL         |
| AIR CONDITIONER]                             |
| AIR INTAKE ACTUATOR                          |
| CONSTRUCTION                                 |
| AIR MIX ACTUATOR                             |
| CONSTRUCTION                                 |
| AIRFLOW MODE ACTUATOR                        |
| CONSTRUCTION                                 |
| BLOWER MOTOR CONSTRUCTION 07–40–7            |
| POWER MOS FET FUNCTION 07–40–8               |
| RESISTOR CONSTRUCTION 07–40–9                |
| MAGNETIC CLUTCH                              |
| CONSTRUCTION                                 |
| THERMAL PROTECTOR                            |
| CONSTRUCTION                                 |
| REFRIGERANT PRESSURE SWITCH                  |
| CONSTRUCTION                                 |
| SOLAR RADIATION SENSOR                       |
| CONSTRUCTION                                 |
| AMBIENT TEMPERATURE SENSOR                   |
| CONSTRUCTION                                 |
| CABIN TEMPERATURE SENSOR                     |
| CONSTRUCTION 07-40-11                        |
| EVAPORATOR TEMPERATURE SENSOR                |
| CONSTRUCTION                                 |
| WATER HEATER SYSTEM OUTLINE [MZR-CD (RF      |
| Turbo)]07–40–11                              |
| WATER HEATER SYSTEM STRUCTURAL VIEW          |
| [MZR-CD (RF Turbe)] 07–40–12                 |
| WATER HEATER SYSTEM OPERATION IMZR-CD        |
| (RF Turbo)] 07–40–12                         |

| CLIMATE CONTROL UNIT CONSTRUCTION [FULL- |
|------------------------------------------|
| AUTO AIR CONDITIONER]07–40–13            |
| CAN (CONTROLLER AREA NETWORK)            |
| OUTLINE07–40–14                          |
| FULL-AUTO AIR CONDITIONER                |
| FUNCTION07–40–14                         |
| AIRFLOW TEMPERATURE CONTROL              |
| OUTLINE07–40–18                          |
| AIRFLOW TEMPERATURE CONTROL SYSTEM       |
| DIAGRAM07–40–19                          |
| AIRFLOW TEMPERATURE CONTROL              |
| OPERATION                                |
| AIRFLOW VOLUME CONTROL                   |
| OUTLINE07–40–21                          |
| AIRFLOW VOLUME CONTROL SYSTEM            |
| DIAGRAM07–40–21                          |
| AIRFLOW VOLUME CONTROL                   |
| OPERATION                                |
| AIRFLOW MODE CONTROL                     |
| OUTLINE07–40–24                          |
| AIRFLOW MODE CONTROL SYSTEM              |
| DIAGRAM07–40–25                          |
| AIRFLOW MODE CONTROL                     |
| OPERATION                                |
| AIR INTAKE CONTROL OUTLINE07–40–26       |
| AIR INTAKE CONTROL SYSTEM                |
| DIAGRAM07–40–26                          |
| AIR INTAKE CONTROL OPERATION 07–40–27    |
| A/C COMPRESSOR CONTROL                   |
| OUTLINE07–40–27                          |
| A/C COMPRESSOR CONTROL SYSTEM            |
| DIAGRAM07–40–28                          |
| A/C COMPRESSOR CONTROL                   |
| OPERATION                                |
| CLIMATE CONTROL UNIT CONSTRUCTION        |
| [MANUAL AIR CONDITIONER]07–40–29         |
| MANUAL AIR CONDITIONER CONTROL           |
| SYSTEM                                   |

#### CONTROL SYSTEM OUTLINE

DPE074000000T05

07

| Reduced fuel consumption when the A/C<br>is operating (Reduced idling increase<br>amount when A/C compressor is<br>operating) | Refrigerant pressure switch with medium-pressure switch adopted                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved operability                                                                                                          | <ul> <li>Climate control unit with enlarged operation dial and switch adopted</li> </ul>                                                                              |
| Simplification, size reduction                                                                                                | <ul> <li>Climate control unit integrated with A/C amplifier adopted. (Full-auto air conditioner)</li> </ul>                                                           |
| Wiring harness simplification                                                                                                 | <ul> <li>CAN for communication between the PCM, audio, meter, and climate control<br/>unit adopted (Full-auto air conditioner)</li> </ul>                             |
| Defroster mode defrosting performance<br>improved                                                                             | <ul> <li>Climate control unit that switches to fresh air automatically when the mode dial<br/>is turned to defroster mode adopted (Manual air conditioner)</li> </ul> |

## CONTROL SYSTEM LOCATION INDEX [FULL-AUTO AIR CONDITIONER]

DPE074000000T01



| 1 | Air intake actuator | 3 | Airflow mode actuator |
|---|---------------------|---|-----------------------|
| 2 | Air mix actuator    | 4 | Blower motor          |

07-40-2

|   | 5   | Power MOS FET                         |
|---|-----|---------------------------------------|
|   | 6   | Magnetic clutch <del>(LF, L8)</del>   |
|   | -7  | Magnetic clutch (MZR-CD (RF Turbo))   |
|   | -   |                                       |
|   | 8   | Solar radiation sensor                |
|   | 9   | Ambient temperature sensor            |
|   | 10  | Cabin temperature sensor              |
|   | 11  | Evaporator temperature sensor         |
|   | 12  | Refrigerant pressure switch           |
|   | 13  | Climate control unit                  |
|   | 14  | A/C relay                             |
|   | 15  | Blower relay                          |
|   | 16  | PCM <del>(LF, Lô) -</del>             |
| - | 47  |                                       |
|   | .,  |                                       |
|   | 18  | BCM                                   |
| - | 19  | Water heater unit (MZR-CD (RF Turbo)) |
|   | . • |                                       |

## CONTROL SYSTEM LOCATION INDEX [MANUAL AIR CONDITIONER]

L.H.D.



07

DPE074000000T02



| 1 | Air intake actuator                 |
|---|-------------------------------------|
| 2 | Blower motor                        |
| 3 | Resistor                            |
| 4 | Magnetic clutch (LF, L8)            |
| 5 | Magnetic eluteh (MZP CD (PE Turbe)) |
|   |                                     |
| 6 | Evaporator temperature sensor       |

| 7  | Refrigerant pressure switch           |
|----|---------------------------------------|
| 8  | Climate control unit                  |
| 9  | A/C relay                             |
| 10 | Blower relay                          |
| 11 | BCM                                   |
| 10 | Water bester upit (MZP CD (PE Turbo)) |
|    |                                       |

## CONTROL SYSTEM WIRING DIAGRAM [FULL-AUTO AIR CONDITIONER]



DPE740ZT1101

07

| Ambient temperature sensor    |
|-------------------------------|
| Cabin temperature sensor      |
| Evaporator temperature sensor |
| Solar radiation sensor        |
| Magnetic clutch               |
| Refrigerant pressure switch   |
| Air mix actuator              |
| Airflow mode actuator         |
|                               |

| 9  | Air intake actuator  |
|----|----------------------|
| 10 | Blower motor         |
| 11 | Blower relay         |
| 12 | Power MOS FET        |
| 13 | Climate control unit |
| 14 | A/C relay            |
| 15 | TNS relay            |
| 16 | Each switch          |

## CONTROL SYSTEM WIRING DIAGRAM[MANUAL AIR CONDITIONER]

DPE074000000T04



DPE740ZT1102

| 1 | Blower relay                  |
|---|-------------------------------|
| 2 | Blower motor                  |
| 3 | Resistor                      |
| 4 | Air intake actuator           |
| 5 | Evaporator temperature sensor |
| 6 | A/C relay                     |

| 7  | Magnetic clutch             |
|----|-----------------------------|
| 8  | Refrigerant pressure switch |
| 9  | Fan switch                  |
| 10 | Climate control unit        |
| 11 | TNS relay                   |

#### AIR INTAKE ACTUATOR CONSTRUCTION

• A sliding contact type has been adopted.

DPE074061060T01



#### AIR MIX ACTUATOR CONSTRUCTION

A potentiometer type, which allows minute and smooth changes of the door position, has been adopted.



#### AIRFLOW MODE ACTUATOR CONSTRUCTION

A potentiometer type, which allows minute and smooth changes of the door position, has been adopted.



#### **BLOWER MOTOR CONSTRUCTION**

• A sirocco fan has been adopted.

DPE074061020T01

| 1 | Blower motor |
|---|--------------|
| 2 | Sirocco fan  |



#### POWER MOS FET FUNCTION

DPE074000116T01

- Function
  - Controls the supply voltage to the blower motor according to the gate voltage sent from the climate control unit and adjusts the rotation speed (airflow volume).

| 1 | Power MOS FET        |
|---|----------------------|
| 2 | Blower relay         |
| 3 | Blower motor         |
| 4 | Gate voltage         |
| 5 | Climate control unit |



#### **Construction/Operation**

• There are three electrodes: source, gate, and drain electrodes.

| 1 | Gate   |
|---|--------|
| 2 | Drain  |
| 3 | Source |

- The resistance between terminals B and A (between drain and source) changes according to the voltage (gate voltage) applied to terminal E (gate).
- When the gate voltage increases, the resistance between terminals B and A decreases, allowing the current to flow easily.



| 1 | Small current     |
|---|-------------------|
| 2 | Low gate voltage  |
| 3 | Large current     |
| 4 | High gate voltage |



**RESISTOR CONSTRUCTION** 

• A thin card type has been adopted for weight reduction.

|--|

**MAGNETIC CLUTCH CONSTRUCTION** 

• Consists of the following parts:

1

2

3

4

5

Shim



DPE074061010T01





## MZR-CD (RF Turbo) 07 3 ØP DPE740ZT1001

#### THERMAL PROTECTOR CONSTRUCTION

• An indirect sensing type has been adopted, reducing the number of the component parts.

DPE074061000T01





#### **REFRIGERANT PRESSURE SWITCH CONSTRUCTION**

DPE074061503T01

- A triple pressure type has been adopted.
- Consists of the low/high-pressure switch that protects the refrigerant cycle by cutting the A/C signal when pressure in the refrigerant cycle is abnormally high or low, and the medium-pressure switch that outputs an idling increase signal according to the A/C compressor operation load.

#### Medium-pressure switch

- When the refrigerant pressure is **approx. 1.39 MPa {14.2 kgf·cm<sup>2</sup>, 202 psi} or more**, the contact is energized and an idling increases signal is output to the PCM.
- When the A/C is on and an idling increase signal is input to the PCM, it sends an operation signal to the IAC solenoid valve.



2 Operation pressure

| 0 |                        |
|---|------------------------|
| 4 | Medium-pressure switch |
|   |                        |

#### SOLAR RADIATION SENSOR CONSTRUCTION

DPE074061751T01

• A photo diode (light-receiving diode) has been adopted.



1 Solar radiation sensor

#### AMBIENT TEMPERATURE SENSOR CONSTRUCTION

• A thermistor type has been adopted.

DPE074061764T01



Ambient temperature sensor

1

1



#### CABIN TEMPERATURE SENSOR CONSTRUCTION

• A thermistor has been adopted.

Cabin temperature sensor

#### EVAPORATOR TEMPERATURE SENSOR CONSTRUCTION

- A thermistor type has been adopted.
- 1 Evaporator temperature sensor



07

#### WATER HEATER SYSTEM OUTLINE [MZR-CD (RF TURBO)]

- To improve heating capability directly after cold start, a water heater system has been adopted for MZR-CD (RF Turbo) model.
- Within the water heater unit, fuel is combusted and used to heat the engine coolant.
- The heated coolant is then passed through the heater core, which uses to provide heated air to the vehicle cabin.

DPE074061022T01

DPE074061758T01



#### Full half Switching

Depending on the engine coolant temperature, the CPU sets the flame to eigher full or half strength settings.

## 07-40-12



#### CLIMATE CONTROL UNIT CONSTRUCTION [FULL-AUTO AIR CONDITIONER]

- A logic-type climate control unit is used with the full-auto air conditioner.
- Each switches and dials have been enlarged to improve ease of operation.



| 1 | Climate control unit        |
|---|-----------------------------|
| 2 | Airflow volume control dial |
| 3 | OFF switch                  |
| 4 | MODE switch                 |
| 5 | DEFROSTER switch            |
| 6 | Temperature setting dial    |

| 7  | AUTO switch                  | 07 |
|----|------------------------------|----|
| 8  | A/C switch                   | 07 |
| 9  | REC switch                   |    |
| 10 | Rear window defroster switch |    |
| 11 | AMB switch                   |    |

• Information about the operating condition of the system is displayed on the information display.

DPE074061190T01



1 Information display

#### CAN (CONTROLLER AREA NETWORK) OUTLINE

 The climate control unit sends and receives data to and from other modules via the CAN system. Refer to Section 09-40 for a detailed explanation of the CAN.

#### Data sent/received

#### Data sent

- A/C operation status
- A/C operation status display
- Ambient temperature display
- Operation sound for climate control unit switch
- Malfunction diagnosis output

#### **Data received**

- Engine coolant temperature
- Vehicle speed signal
- Temperature display (°C/°F) determination
- Malfunction diagnosis input
- Wiper status
- R/DEF IND. signal
- Light ON/OFF signal
- Water heater system operation signal

#### FULL-AUTO AIR CONDITIONER FUNCTION

#### **Block Diagram**

• The control system consists of input components (sensors), output components (actuators, magnetic clutch, power MOS FET, and other parts), and a control device (climate control unit).

DPE074000003T01



| 1  | Ambient temperature sensor    |
|----|-------------------------------|
| 2  | ECT sensor                    |
| 3  | Cabin temperature sensor      |
| 4  | Evaporator temperature sensor |
| 5  | Solar radiation sensor        |
| 6  | Climate control unit          |
| 7  | Airflow temperature control   |
| 8  | Airflow volume control        |
| 9  | Airflow mode control          |
| 10 | Air intake control            |
| 11 | A/C compressor control        |
| 12 | Air mix actuator              |
| 13 | Power MOS FET                 |

| 14 | Blower motor                 | - |
|----|------------------------------|---|
| 15 | Airflow mode actuator        |   |
| 16 | Air intake actuator          | 0 |
| 17 | Refrigerant pressure switch  |   |
| 18 | HI and LO pressure           |   |
| 19 | Medium pressure              |   |
| 20 | A/C cut control              |   |
| 21 | A/C relay                    |   |
| 22 | Stator and thermal protector |   |
| 23 | Magnetic clutch              |   |
| 24 | Idle speed control           |   |
| 25 | IAC valve                    |   |

#### **Control Table**

• The full-auto air conditioner system functions based on the five basic types of controls and three supplementary functions.

| Basic control               | Control description                   | Correction control                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Airflow temperature control | Airflow temperature automatic control | <ul> <li>Air intake correction</li> <li>A/C correction</li> <li>MAX HOT and MAX COLD correction</li> <li>Engine coolant temperature correction</li> </ul>                                                                                                                                                                                                               |
| Airflow volume control      | Airflow volume automatic control      | <ul> <li>Engine coolant temperature correction (warm-up correction)</li> <li>Vehicle speed correction</li> <li>Mild start correction</li> <li>MAX HOT and MAX COLD correction</li> <li>Window fogging prevention correction at start</li> <li>Starting compensation correction</li> <li>Defroster correction</li> <li>Starting burnt-out prevention function</li> </ul> |
|                             | Airflow volume manual control         | <ul><li>Defroster correction</li><li>Starting burnt-out prevention function</li></ul>                                                                                                                                                                                                                                                                                   |
| Airflow mode control        | Airflow mode automatic control        | <ul> <li>Ambient temperature correction</li> <li>Engine coolant temperature correction (warm-<br/>up correction)</li> </ul>                                                                                                                                                                                                                                             |
|                             | Airflow mode manual control           | —                                                                                                                                                                                                                                                                                                                                                                       |
| Air intake control          | Air intake automatic control          | <ul> <li>MAX COLD correction</li> <li>Defroster correction</li> <li>Ambient temperature correction</li> <li>A/C OFF correction</li> </ul>                                                                                                                                                                                                                               |
|                             | Air intake manual control             | Defroster correction                                                                                                                                                                                                                                                                                                                                                    |
| A/C compressor control      | A/C compressor automatic control      | <ul> <li>Defroster correction</li> <li>Ambient temperature correction</li> <li>MAX COLD correction</li> <li>Wiper correction</li> <li>Window fogging prevention correction at start</li> </ul>                                                                                                                                                                          |
|                             | A/C compressor manual control         | <ul> <li>Defroster correction</li> <li>Ambient temperature correction</li> <li>Window fogging prevention correction at start</li> </ul>                                                                                                                                                                                                                                 |

| Supplementary function       |  |  |  |  |
|------------------------------|--|--|--|--|
| Fail-safe function           |  |  |  |  |
| Sensor signal delay function |  |  |  |  |
| On-board diagnostic function |  |  |  |  |

#### Control Type Transition by Switch Operation Airflow temperature control, airflow volume control

| Operation switch   |                                                   | Airflow<br>temperature<br>control    | Airflow volume control            |                              |                      |   |       |           |   |   |                                   |   |  |  |
|--------------------|---------------------------------------------------|--------------------------------------|-----------------------------------|------------------------------|----------------------|---|-------|-----------|---|---|-----------------------------------|---|--|--|
|                    |                                                   | Control prior to<br>switch operation | Control prior to switch operation |                              |                      |   |       |           |   |   | Control prior to switch operation |   |  |  |
|                    |                                                   | Automatic                            | Automatic                         | Defroster                    | Manual control       |   |       |           |   |   |                                   |   |  |  |
|                    |                                                   | control                              | control                           | correction                   | OF<br>F              | 1 | 2     | 3         | 4 | 5 | 6                                 | 7 |  |  |
| OFF                | switch                                            | Automatic control                    | OFF                               | OFF                          | OFF                  |   |       |           |   |   |                                   |   |  |  |
| AUTO switch        |                                                   | Automatic control                    | Automatic control                 | Automatic control            | Automatic control    |   |       |           |   |   |                                   |   |  |  |
| Ean switch         | +                                                 | Automatic control                    | Manual control <sup>*2</sup>      | Manual control <sup>*2</sup> | 1                    | 2 | 3     | 4         | 5 | 6 | 7                                 | 7 |  |  |
| Fan Switch         | -                                                 | Automatic control                    | Manual control <sup>*3</sup>      | Manual control <sup>*3</sup> | 1 1 1 2              |   | 3     | 4         | 5 | 6 |                                   |   |  |  |
| MODE               | switch                                            | Automatic control                    | Automatic control                 | *5                           | No change            |   |       |           |   |   |                                   |   |  |  |
| DEFROSTER switch   |                                                   | Automatic control                    | Defroster<br>correction           | No change                    | Defroster correction |   |       |           |   |   |                                   |   |  |  |
| A/C switch         |                                                   | Automatic control                    | Automatic control                 | No change                    | No change            |   |       |           |   |   |                                   |   |  |  |
| REC/FRESH switch   |                                                   | Automatic control                    | Automatic control                 | No change                    | No change            |   |       | No change |   |   |                                   |   |  |  |
| Temperatu          | 15.0                                              | MAX COLD                             | MAX HI                            | MAX HI                       | No change            |   | 9     |           |   |   |                                   |   |  |  |
| re setting         | ing 15.5–28.5 Automatic control Automatic control |                                      | Automatic control                 | No change                    | No change            |   |       |           |   |   |                                   |   |  |  |
| dial <sup>*1</sup> | 29.0                                              | MAX HOT                              | AUTO HI <sup>*4</sup>             | AUTO HI                      | No char              |   | nange | :         |   |   |                                   |   |  |  |

<sup>\*1</sup> : Adjusted up or down in increments of 0.5 within a range of 15.0—29.0. When the fan is OFF, the temperature setting can be adjusted in increments of  $\pm 1.0$ .

 $^{*2}$ : Increases to the manual voltage that is closest to the auto or defroster correction voltage.

\*3 : Decreases to the manual voltage that is closest to the auto or defroster correction voltage.

\*4 : Engine coolant temperature correction takes precedence.

\*5 : Returns to condition prior to defroster operation. However, if it had been off prior to defroster operation, it switches to automatic control.

07

| Airriow mode control, air intake control, A/C compressor control |            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                          |                                                     |                                    |                                      |                                    |  |
|------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|--------------------------------------|------------------------------------|--|
| Operation switch                                                 |            | Airflow mo                                                                                                                                                                                                                                                                                | Airflow mode control Air intake control                                                                                                                                                                                                                                  |                                                     |                                    |                                      | ssor control                       |  |
|                                                                  |            | Control pric                                                                                                                                                                                                                                                                              | or to switch<br>ation                                                                                                                                                                                                                                                    | Control pric                                        | or to switch<br>ation              | Control prior to switch<br>operation |                                    |  |
|                                                                  |            | Automatic<br>control                                                                                                                                                                                                                                                                      | Manual<br>control                                                                                                                                                                                                                                                        | Automatic<br>control                                | Manual<br>control                  | Automatic<br>control                 | Manual<br>control                  |  |
| OFF switch                                                       |            | Fixed at mode<br>before turned<br>OFF <sup>*2</sup>                                                                                                                                                                                                                                       | No change <sup>*2</sup>                                                                                                                                                                                                                                                  | Fixed at mode<br>before turned<br>OFF <sup>*2</sup> | No change <sup>*2</sup>            | OFF                                  | OFF                                |  |
| AUTO                                                             | switch     | Automatic<br>control                                                                                                                                                                                                                                                                      | Automatic<br>control                                                                                                                                                                                                                                                     | Automatic<br>control                                | Automatic<br>control               | Automatic<br>control                 | Automatic<br>control               |  |
| Eap switch                                                       | +          | Automatic<br>control                                                                                                                                                                                                                                                                      | No change                                                                                                                                                                                                                                                                | Automatic<br>control                                | No change                          | Automatic<br>control                 | No change                          |  |
| Fall Switch                                                      | -          | Automatic<br>control                                                                                                                                                                                                                                                                      | No change                                                                                                                                                                                                                                                                | Automatic<br>control                                | No change                          | Automatic<br>control                 | No change                          |  |
| MODE switch                                                      |            | $\begin{array}{c} \text{VENT} \rightarrow \text{BI-}\\ \text{LEVEL} \\ \text{BI-LEVEL} \rightarrow \\ \text{HEAT} \\ \text{HEAT} \rightarrow \text{HEAT} \\ \\ \text{DEF} \\ \text{HEAT/DEF} \rightarrow \\ \\ \text{VENT} \\ \text{DEFROSTER} \\ \rightarrow \text{HEAT} \\ \end{array}$ | $\begin{array}{c} \text{VENT} \rightarrow \text{BI-}\\ \text{LEVEL} \\ \text{BI-LEVEL} \rightarrow \\ \text{HEAT} \\ \text{HEAT} \rightarrow \text{HEAT} \\ \\ \text{HEAT/DEF} \rightarrow \\ \text{VENT} \\ \text{DEFROSTER} \\ \rightarrow \text{HEAT} \\ \end{array}$ | Automatic<br>control                                | No change <sup>*2</sup>            | Automatic<br>control                 | DEFROSTER <sup>*</sup><br>3        |  |
| DEFROS                                                           | TER switch | DEFROSTER <sup>*2</sup>                                                                                                                                                                                                                                                                   | DEFROSTER*2                                                                                                                                                                                                                                                              | Defroster correction <sup>*2</sup>                  | Defroster correction <sup>*2</sup> | Defroster correction <sup>*3</sup>   | Defroster correction <sup>*3</sup> |  |
| A/C switch                                                       |            | Automatic<br>control                                                                                                                                                                                                                                                                      | No change                                                                                                                                                                                                                                                                | Automatic<br>control                                | No change                          | A/C→OFF<br>OFF→A/C <sup>*4</sup>     | A/C→OFF<br>OFF→A/C <sup>*4</sup>   |  |
| REC/FRESH switch                                                 |            | Automatic<br>control                                                                                                                                                                                                                                                                      | No change                                                                                                                                                                                                                                                                | FRESH→REC<br>REC→FRESH                              | FRESH→REC<br>REC→FRESH             | Automatic<br>control                 | No change                          |  |
| Temperatu                                                        | 15.0       | Automatic<br>control                                                                                                                                                                                                                                                                      | No change                                                                                                                                                                                                                                                                | Automatic<br>control                                | No change                          | Automatic<br>control                 | No change                          |  |
| re setting<br>dial <sup>*1</sup>                                 | 15.5—28.5  | Automatic<br>control                                                                                                                                                                                                                                                                      | No change                                                                                                                                                                                                                                                                | Automatic<br>control                                | No change                          | Automatic<br>control                 | No change                          |  |
| Giùi                                                             | 29.0       | Automatic<br>control                                                                                                                                                                                                                                                                      | No change                                                                                                                                                                                                                                                                | Automatic<br>control                                | No change                          | Automatic control                    | No change                          |  |

#### . . .. . . . - - -

<sup>\*1</sup>: Adjusted up or down in increments of 0.5 within a range of 15.0—29.0. When the fan is OFF, the temperature setting can be adjusted in increments of  $\pm 1.0$ .

\*2 : If operated during defroster correction, it returns to the condition prior to defroster operation.

\*3 : If operated during defroster correction, it returns to the condition prior to defroster operation. However, if it had been off prior to defroster operation, it switches to automatic control.

\*4 : When the fan is OFF, it is fixed at A/C OFF.

#### **AIRFLOW TEMPERATURE CONTROL OUTLINE**

#### Features

• The airflow temperature is constantly controlled automatically. The climate control unit controls the airflow temperature via the air mix actuator.

DPE074061193T01

#### **AIRFLOW TEMPERATURE CONTROL SYSTEM DIAGRAM**



| 1 | Set temperature                  |
|---|----------------------------------|
| 2 | Solar radiation amount           |
| 3 | Ambient temperature              |
| 4 | Evaporator temperature           |
| 5 | Cabin temperature                |
| 6 | Airflow mode                     |
| 7 | Air intake mode                  |
| 8 | A/C compressor control condition |

| 9  | Signal                     |
|----|----------------------------|
| 10 | Climate control unit       |
| 11 | Output                     |
| 12 | Feedback                   |
| 13 | Air mix actuator           |
| 14 | Operation                  |
| 15 | Air mix door               |
| 16 | Airflow temperature change |

#### AIRFLOW TEMPERATURE CONTROL OPERATION

#### **Airflow Temperature Automatic Control**

- The climate control unit calculates the air mix actuator opening angle characteristic for the given ambient temperature based on the set temperature, sunlight intensity, and airflow mode. The air mix actuator opening angle characteristic decreases as the sunlight intensity increases.
- The opening angle characteristic of the air mix actuator and the current ambient temperature are compared and the basic opening angle for the air mix actuator is determined according to the A/C compressor control status. The opening angle must maintain the target temperature (calculated control value T1) in the cabin against changes in external factors such as sunlight intensity and ambient temperature.
- If there is a difference between the target temperature (calculated control value T1) and current cabin temperature, the basic opening angle of the air mix actuator is corrected so that the cabin temperature rapidly reaches the target temperature.
- Calculated control value T1 is the target temperature in the cabin as set by the climate control unit based on differences among the set temperature, temperatures input from the sensors, and sunlight intensity. Calculated control value T1 is calculated according to the changes in the set temperature and temperatures input from the sensors.



| D2E0740T0 | 2 |
|-----------|---|
| D3E074010 | ~ |

| 1 | Low sunlight intensity  |
|---|-------------------------|
| 2 | High sunlight intensity |

З Air mix actuator opening angle characteristic (A/C off mode)

#### DPE074061193T05

07

| 4  | Air mix actuator opening angle characteristic (A/C on mode) |
|----|-------------------------------------------------------------|
| 5  | Fully open (MAX HOT)                                        |
| 6  | Fully closed (MAX COLD)                                     |
| 7  | Air mix actuator opening angle                              |
| 8  | Low                                                         |
| 9  | High                                                        |
| 10 | Ambient temperature                                         |

#### Correction

#### Air intake correction

 When the air intake mode is switched from FRESH to REC when the A/C is off, a correction is added to the air mix actuator opening angle to prevent a rise in airflow temperature. In addition, this correction delays the air mix actuator operation to prevent a sudden drop in airflow temperature.



| 1 | Air intake door | 5 | CO  |
|---|-----------------|---|-----|
| 2 | Fresh           | 6 | Air |
| 3 | Recirculate     | 7 | Tim |
| 4 | НОТ             |   |     |

5 COLD
6 Air mix actuator opening angle correction amount
7 Time

#### A/C correction

When the A/C compressor control is switched from A/C ON mode to OFF mode, the opening angle of the air mix actuator is switched from the A/C ON mode opening angle to the A/C OFF mode opening angle to prevent a rise in airflow temperature. In addition, this correction delays the air mix actuator operation to prevent a sudden drop in airflow temperature. However, the operation is not delayed when the evaporator temperature is 15 °C {59 °F} or more.



| 1 | A/C compressor control | 5 | COLD                                             |
|---|------------------------|---|--------------------------------------------------|
| 2 | A/C on mode            | 6 | Air mix actuator opening angle correction amount |
| 3 | A/C off mode           | 7 | Time                                             |
| 4 | НОТ                    |   |                                                  |

#### MAX HOT and MAX COLD correction

• When the temperature is set to **29.0**, the air mix actuator opening angle is fixed at fully open and when set to **15.0**, it is fixed at fully closed.

#### Engine coolant temperature correction

• After the engine is started in winter, the air mix actuator opening angle is corrected so that it is adjusted to the HOT side to prevent discomfort caused by cold air blown from the vent. However, the engine coolant temperature correction is not performed when the ambient temperature is **10** °C **{50** °F**} or more**.

#### AIRFLOW VOLUME CONTROL OUTLINE

Features

 Consists of the airflow volume automatic and manual controls with the climate control unit controlling the airflow volume (blower motor applied voltage) via the power MOS FET.

## AIRFLOW VOLUME CONTROL SYSTEM DIAGRAM



| 1 | Fan switch          |
|---|---------------------|
| 2 | Set temperature     |
| 3 | Airflow mode        |
| 4 | Ambient temperature |
| 5 | Cabin temperature   |

| 6  | Solar radiation amount     |
|----|----------------------------|
| 7  | Engine coolant temperature |
| 8  | ECT sensor                 |
| 9  | Signal                     |
| 10 | Climate control unit       |

DPE074061194T01

| 11 | Output                |
|----|-----------------------|
| 12 | Feedback              |
| 13 | Power MOS FET         |
| 14 | Operation             |
| 15 | Blower motor          |
| 16 | Airflow volume change |

#### AIRFLOW VOLUME CONTROL OPERATION

DPE074061194T03

#### **Airflow Volume Automatic Control**

- The climate control unit calculates the blower motor applied voltage characteristic based on the set temperature, ambient temperature, and solar radiation amount.
- Compares the differences among this blower motor applied voltage characteristic and the target temperature (Calculated control value T2) and then determines the blower motor applied voltage (AUTO voltage).
- Calculated control value T2 is the difference between the set temperature and temperatures input from the sensors, and is used by the climate control unit to determine the target cabin temperature determined. Calculated control value T2 is constantly calculated according to the set temperature and the signals input from the sensors.



| 1 | Stable period                                         |
|---|-------------------------------------------------------|
| 2 | Transition period                                     |
| 3 | When cooling                                          |
| 4 | When heating                                          |
| 5 | Blower motor applied voltage characteristic           |
| 6 | Increases/decreases linearly with sunlight intensity. |

| 7  | MAX-HI                                      |
|----|---------------------------------------------|
| 8  | MIDDLE-HI                                   |
| 9  | AUTO-HI                                     |
| 10 | Blower motor applied voltage characteristic |
| 11 | Calculated control value T2                 |

#### Correction

#### Engine coolant temperature correction (warm-up correction)

• Controls the blower motor applied voltage according to the increase in engine coolant temperature to prevent discomfort caused by a high volume of cold air blown from the vents in winter after starting the engine. However, the engine coolant temperature correction is not performed during defroster correction and when the cabin temperature is 20 °C {68 °F} or more, and the airflow mode is in VENT mode.



| 1 | Rises to auto voltage.       |   | 4 | High                       |
|---|------------------------------|---|---|----------------------------|
| 2 | Blower motor applied voltage |   | 5 | Engine coolant temperature |
| 3 | Low                          | ] |   |                            |

#### Vehicle speed correction

• When the air intake mode is at FRESH while driving at high speed, the airflow volume increases due to the wind blowing against the vehicle and air conditioner performance is negatively effected. To prevent this, the blower motor applied voltage is corrected according to the vehicle speed. Also the climate control unit stably performs control even when the vehicle speed is suddenly changed due to braking by delaying the input vehicle speed signal. However, the vehicle speed correction is not performed during airflow volume manual control, defroster correction, start compensation correction, fail-safe function, MAX HOT control and MAX-HI.



| 1 | Vehicle speed correction                       |
|---|------------------------------------------------|
| 2 | Vehicle speed delay                            |
| 3 | Blower motor applied voltage correction amount |
| 4 | Speed                                          |

|   |                                                                | 07 |
|---|----------------------------------------------------------------|----|
| 5 | High                                                           |    |
| 6 | (Example) Actual vehicle speed variation                       |    |
| 7 | Delayed vehicle speed determination by climate<br>control unit |    |
| 8 | Time                                                           |    |

#### Mild start correction

Limits blower motor applied voltage for 3 s after the blower motor is started in summer to prevent discomfort caused by a high volume of hot air blown from the vent. However, the mild start correction is not performed when the cabin temperature is 20 °C {68 °F} or less and when the airflow is in any mode other than VENT.



| 1 | Rises to auto voltage.       | 3 | Time |
|---|------------------------------|---|------|
| 2 | Blower motor applied voltage |   |      |

#### MAX HOT and MAX COLD correction

• When the set temperature is at **29.0**, the blower motor applied voltage is fixed at AUTO-HI, and when the set temperature is at **15.0**, the blower motor applied voltage is fixed at MAX-HI. However, MAX HOT correction is not performed during engine coolant correction.

| Correction name     | Set temperature | Blower motor applied voltage |
|---------------------|-----------------|------------------------------|
| MAX HOT correction  | 29.0            | 12.1 (V): AUTO-HI            |
| MAX COLD correction | 15.0            | V <sub>B</sub> : MAX-HI      |

#### Window fogging prevention correction at start

Just after engine start, the A/C compressor is not turned on due to PCM A/C cut-off control. As air blows from
the defroster when the heater is started, the windows can easily become fogged. To prevent this, blower motor
applied voltage is fixed at 0 V for 6 s after the ignition switch is turned to the ON position. However, window
fogging prevention correction at start is not performed when the airflow mode is in any mode other than HEAT,
HEAT/DEF or DEFROSTER.

#### Starting compensation correction

• When the blower motor is started-up at the lowest speed (3.2 V), the blower motor applied voltage is fixed at 4.4 V for 2 s to stabilize blower motor start-up operation.

#### Defroster correction

• To improve defrosting of the windows, a correction (+2 V) is added to the blower motor applied voltage when the defroster switch is turned on.

#### Starting burn-out prevention function

• When the blower motor is started-up from the stopped status with a blower motor applied voltage of **4.4 V or more**, the blower motor applied voltage is fixed at **4.4 V for 1 s** to prevent the power MOS FET from burning out due to excessive current.

#### **Airflow Volume Manual Control**

• The blower motor applied voltage (airflow volume) can be switched in seven steps with the fan switch.

| Fan switch | Blower motor applied voltage |
|------------|------------------------------|
| 1st        | 4.4 V                        |
| 2nd        | 6.1 V                        |
| 3rd        | 7.8 V                        |
| 4th        | 9.5 V                        |
| 5th        | 10.8 V                       |
| 6th        | 12.1 V                       |
| 7th        | B+                           |

#### AIRFLOW MODE CONTROL OUTLINE

#### Features

• Consists of the airflow mode automatic and manual controls with the climate control unit controlling the airflow mode via the airflow mode actuator.

DPE074061195T01

#### AIRFLOW MODE CONTROL SYSTEM DIAGRAM



| 1 | MODE, defroster switchs                     |
|---|---------------------------------------------|
| 2 | Solar radiation amount                      |
| 3 | Engine coolant temperature                  |
| 4 | ECT sensor                                  |
| 5 | Cabin temperature                           |
| 6 | Air mix actuator temperature opening degree |
| 7 | A/C compressor control condition            |
| 8 | Signal                                      |

| 9  | Climate control unit  |  |
|----|-----------------------|--|
| 10 | Output                |  |
| 11 | Feedback              |  |
| 12 | Airflow mode actuator |  |
| 13 | Operation             |  |
| 14 | Airflow mode door     |  |
| 15 | Airflow mode change   |  |

#### **AIRFLOW MODE CONTROL OPERATION**

#### **Airflow Mode Automatic Control**

DPE074061195T05

07

• The climate control unit determines the airflow mode based on the current air mix actuator opening angle.



1VENT2BI-LEVEL3HEAT4COLD

| 5 | HOI                            |
|---|--------------------------------|
| 6 | Air mix actuator opening angle |
| 7 | Amount varies.                 |

#### Correction

#### Ambient temperature correction

• To improve windshield and door glass from fogging, airflow mode is fixed at HEAT/DEF when the ambient temperature is low. However, ambient temperature correction does not operate when the temperature is set at MAX COLD.

#### Engine coolant temperature correction (Warm-up correction)

• Switches the airflow mode after the engine is started in winter in accordance with the increase in engine coolant temperature to prevent discomfort caused by cold air blown towards the feet. The engine coolant temperature correction is performed only when the cabin temperature is **13** °C **(55** °F) or less, or the cabin

temperature is 23 °C {73 °F} or less and sunlight intensity is relatively low.



| 1 | DEFROSTER                  |
|---|----------------------------|
| 2 | HEAT/DEF                   |
| 3 | HEAT                       |
| 4 | AUTO                       |
| 5 | LOW                        |
| 6 | HIGH                       |
| 7 | Engine coolant temperature |

#### **Airflow Mode Manual Control**

• The airflow modes can be switched by operating the each mode switchs.

| Airflow mode | Switch operated  | Air vent                                                                                                                                                            |
|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VENT         |                  | CENTER VENT, SIDE VENT                                                                                                                                              |
| BI-LEVEL     | MODE switch      | CENTER VENT, SIDE VENT, FRONT HEAT, REAR HEAT                                                                                                                       |
| HEAT         |                  | CENTER VENT <del>(L.H.D.)</del> (low volume), SIDE VENT <del>(L.H.D.)</del> (low volume), FRONT HEAT, REAR HEAT, SIDE DEMISTER (low volume), DEFROSTER (low volume) |
| HEAT/DEF     |                  | CENTER VENT (L.H.D.) (low volume), SIDE VENT (L.H.D.) (low volume), FRONT HEAT, REAR HEAT, SIDE DEMISTER, DEFROSTER                                                 |
| DEFROSTER    | DEFROSTER switch | CENTER VENT-(L.H.D.) (low volume), SIDE VENT-(L.H.D.) (low volume), SIDE DEMISTER, DEFROSTER                                                                        |

#### AIR INTAKE CONTROL OUTLINE

DPE074061203T01

#### Features

• Consists of the air intake automatic and manual controls with the climate control unit controlling the air intake mode via the air intake actuator.

#### AIR INTAKE CONTROL SYSTEM DIAGRAM



| 1 | REC switch                       |  | 7  | Signal       |
|---|----------------------------------|--|----|--------------|
| 2 | A/C compressor control condition |  | 8  | Climate cor  |
| 3 | 3 Defroster switch               |  | 9  | Output       |
| 4 | Solar radiation amount           |  | 10 | Air intake a |
| 5 | 5 Ambient temperature            |  | 11 | Operation    |
| 6 | Cabin temperature                |  | 12 | Air intake d |

| 7  | Signal               |  |
|----|----------------------|--|
| 8  | Climate control unit |  |
| 9  | Output               |  |
| 10 | Air intake actuator  |  |
| 11 | Operation            |  |
| 12 | Air intake door      |  |

13 Air intake mode change

#### AIR INTAKE CONTROL OPERATION

#### Air Intake Automatic Control

• The climate control unit calculates the cabin temperature based on the ambient temperature and sunlight intensity in order to cool the cabin temperature quickly according to the cooling conditions. It then compares the calculated cabin temperature and the actual cabin temperature to determine the proper air intake mode.

| 1 | Recirculate                        |  |
|---|------------------------------------|--|
| 2 | Fresh                              |  |
| 3 | Low                                |  |
| 4 | High                               |  |
| 5 | Calculated cabin temperature value |  |
| 6 | Cabin temperature                  |  |



B3E0740T033

DPE074061203T03

#### Correction

#### **MAX COLD correction**

 When the temperature is set to 15.0, the air intake is set to REC to improve cooling effectiveness. However, the MAX COLD correction is not performed with the defroster correction or during A/C OFF mode.

#### **Defroster correction**

• When the DEFROSTER switch is turned on, the air intake is set to FRESH to improve defrosting. The air intake is set to FRESH even if it has been set to REC manually.

#### Ambient temperature correction

When the ambient temperature is 5 °C {41 °F} or less, the air intake is set to FRESH to prevent window fogging.

#### A/C OFF correction

• Air intake is fixed to FRESH with A/C OFF mode during the air intake automatic control.

#### Air Intake Manual Control

• The air intake modes can be switched by operating the REC switch.

| Air intake mode | REC switch operation                                             |
|-----------------|------------------------------------------------------------------|
| FRESH           | Fixed to FRESH when the REC switch is turned on during REC mode. |
| REC             | Fixed to REC when the REC switch is turned on during FRESH mode. |

#### A/C COMPRESSOR CONTROL OUTLINE

#### Features

- DPE074061196T01 07
- Consists of the A/C compressor automatic and manual controls with the climate control unit outputting the A/C signal to the PCM to control the A/C compressor.
- The PCM controls the A/C relay.

#### A/C COMPRESSOR CONTROL SYSTEM DIAGRAM



| 1 | A/C switch                    |  |
|---|-------------------------------|--|
| 2 | Set temperature               |  |
| 3 | Mode, defroster switch        |  |
| 4 | Ambient temperature           |  |
| 5 | Cabin temperature             |  |
| 6 | Solar radiation amount        |  |
| 7 | Evaporator temperature sensor |  |

| 8  | Signal               |  |
|----|----------------------|--|
| 9  | Climate control unit |  |
| 10 | Output               |  |
| 11 | A/C relay            |  |
| 12 | Operation            |  |
| 13 | Magnetic clutch      |  |

#### A/C COMPRESSOR CONTROL OPERATION

DPE074061196T04

#### **A/C Compressor Automatic Control**

- The climate control unit determines A/C ON/OFF mode based on the ambient temperature.
- In A/C ON mode, the A/C signal (magnetic clutch) is turned on/off according to the temperature of the air passing through the evaporator. The temperature of the air passing through the evaporator at which the A/C signal turns off is determined by the ambient temperature calculation value that is calculated based on the ambient temperature, set temperature, cabin temperature, and sunlight intensity. By setting the A/C signal off temperature low when strong cooling performance is needed, such as when the ambient temperature is high, and setting it high in other conditions, cooling comfort and fuel economy during A/C operation are improved.



A/C mode (ON, OFF) determination 1

| 2 | A/C signal (ON, OFF) determination during A/C ON mode |
|---|-------------------------------------------------------|
| 3 | A/C ON mode                                           |
| 4 | A/C OFF mode                                          |
| 5 | Ambient temperature                                   |
| 6 | A/C signal ON                                         |
| 7 | A/C signal OFF                                        |
| 8 | Varies with calculated ambient temperature value.     |
| 9 | Temperature of air passing through evaporator         |

#### Correction

#### **Defroster correction**

When the DEFROSTER switch is turned on, the system is switched to A/C ON mode and the A/C signal on/off temperature is set to 4.9/3.9 °C {41.0/39.0 °F} to improve defrosting. However, defroster correction is not performed with the ambient temperature correction.

#### Ambient temperature correction

• When the ambient temperature is -5 °C {23 °F} or less, the A/C signal is fixed at OFF to protect the A/C compressor (to prevent A/C compressor fluid from being pressurized). During this operation, manual operation using the A/C switch is not available.

#### MAX COLD correction

• When the temperature is set to **15.0**, the A/C signal on/off temperature is set to **4.9/3.9** °C **{41.0/39.0** °F**}**. Window fogging prevention correction at start

• The A/C compressor does not turn on due to PCM A/C cut-off control just after the engine is started. Therefore, the windshield and front door glass are easily fogged when the heater is turned on and air blows from the defroster. To prevent this, no A/C signal is output from the climate control unit to the PCM **for 6 s** after the ignition switch is turned to the ON position. The window fogging prevention correction at start is not performed when the airflow mode is in any mode other than HEAT, HEAT/DEF, and DEFROSTER during airflow volume automatic control.

#### A/C Compressor Manual Control

• A/C ON or OFF mode is selected by operating the A/C switch.

| A/C mode                  |                        | Operation condition    |
|---------------------------|------------------------|------------------------|
| A/C ON mode               | A/C MODE (A/C display) | Fixed in A/C mode.     |
| A/C OFF mode (No display) |                        | Fixed in A/C OFF mode. |

#### A/C signal ON/OFF determination in A/C mode



| 1 | A/C signal ON                                 |
|---|-----------------------------------------------|
| 2 | A/C signal OFF                                |
| 3 | Temperature of air passing through evaporator |

#### CLIMATE CONTROL UNIT CONSTRUCTION [MANUAL AIR CONDITIONER]

- A wire-type climate control unit is used with the manual air conditioner.
- The airflow mode selector dial, temperature control dial, airflow volume control dial have been enlarged to improve ease of operation.

DPE074061190T03



| 1 | Climate control unit        |
|---|-----------------------------|
| 2 | Airflow mode selector dial  |
| 3 | Airflow volume control dial |
| 4 | Temperature control dial    |

| 5 | A/C switch                   |
|---|------------------------------|
| 6 | REC switch                   |
| 7 | Rear window defroster switch |

DPE074000005T01

#### MANUAL AIR CONDITIONER CONTROL SYSTEM

#### **Block Diagram**

- The climate control unit performs the defroster control based on the signal sent from the airflow mode selector dial, and sends an operating signal to the air intake actuator.
- The climate control unit sends an A/C signal to the PCM via the BCM and instrument cluster based on signals sent from the A/C switch, fan switch and evaporator temperature sensor.
- The PCM sends operating signals to the A/C relay and IAC valve based on A/C signal and vehicle signal.



| 1 | Airflow mode selector switch  | 4 | Fan switch           |
|---|-------------------------------|---|----------------------|
| 2 | Evaporator temperature sensor | 5 | Climate control unit |
| 3 | A/C switch                    | 6 | Defroster control    |

| 7  | A/C compressor control                           |
|----|--------------------------------------------------|
| 8  | Air intake actuator                              |
| 9  | BCM and instrument cluster                       |
| 10 | Refrigerant pressure switch (HI and LO pressure) |
| 11 | Refrigerant pressure switch (medium pressure)    |
| 12 | A/C cut-off control                              |
| 13 | Idle air control                                 |
| 14 | A/C relay                                        |
| 15 | Stator and thermal protector                     |
| 16 | Magnetic clutch                                  |
| 17 | IAC valve                                        |

#### Outline of Control System

• Manual air conditioner defroster control and A/C compressor control.

| Control name           | Control part         |
|------------------------|----------------------|
| Defroster control      | Climate control unit |
| A/C compressor control | Climate control unit |

#### **Defroster Control**

- 1. When the airflow mode selector dial is turned to DEFROSTER position, a wire moves the airflow mode main link, turning the airflow mode to DEFROSTER.
- 2. The defroster switch turns on at the same time, and the CPU sends a signal to turn the air intake mode to FRESH.
- 3. The air intake actuator operates and turns the air intake mode to FRESH.



07

| 1 | Climate control unit       |
|---|----------------------------|
| 2 | Airflow mode selector dial |
| 3 | To DEFROSTER position      |
| 4 | Defroster switch           |
| 5 | Wire                       |

| 6 | Airflow mode main link |
|---|------------------------|
| 7 | FRESH signal           |
| 8 | Air intake actuator    |
| 9 | To FRESH position      |

#### X: Operates -: Does not operate

| Airflow mode | Air intake mode (REC switch pushed) | Defroster control |
|--------------|-------------------------------------|-------------------|
| VENT         | $REC \Leftrightarrow FRESH$         | _                 |
| BI-LEVEL     | $REC \Leftrightarrow FRESH$         | _                 |
| HEAT         | $REC \Leftrightarrow FRESH$         | -                 |
| HEAT/DEF     | $REC \Leftrightarrow FRESH$         | -                 |
| DEFROSTER    | FRESH                               | X                 |

#### **A/C Compressor Control**

- The climate control unit sends an A/C signal to the PCM via the BCM and instrument cluster based on signals sent from the A/C switch, fan switch and evaporator temperature sensor.
- The PCM controls the A/C relay and IAC valve based on the input signal from the climate control unit and refrigerant pressure switch.



| 1 | Evaporator temperature sensor | ] | 5 | Output          |
|---|-------------------------------|---|---|-----------------|
| 2 | A/C signal                    |   | 6 | A/C relay       |
| 3 | Climate control unit          |   | 7 | Magnetic clutch |
| 4 | BCM and instrument cluster    |   | 8 | IAC valve       |

#### A/C signal on/off control

• The climate control unit turns the A/C signal (magnetic clutch) on and off based on the temperature of the air passing through the evaporator when the A/C and fan switches are on. This keeps the evaporator surface temperature within the specified range, preventing the evaporator from freezing while the fan switch and A/C switch are turned on.



B3E0740T420

| 1 | A/C signal on/off decision    |
|---|-------------------------------|
| 2 | Evaporator temperature sensor |
| 3 | A/C signal                    |